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Slowly changing Hamiltonian

For slow enough evolution the system stays in its eigenstate

Outcome 0 on ancilla yields a linear combination of unitaries

The central idea of adiabatic quantum computing is to use a 

classically controlled time–dependent quantum system to prepare 

an eigenstate that encodes the answer to a computational problem. 

Although equivalent to the circuit model of computing, algorithm 

design and optimization can be difficult for adiabatic quantum 

computing. Here we address the question whether generalizing 

adiabatic quantum information protocols to use quantum, rather 

than classical control, can help address these issues. We find that 

coherent control and measurement provides a way to average

different adiabatic evolutions in ways that cause their diabatic 

errors to cancel, allowing for adiabatic evolutions to combine the 

best characteristics of existing adiabatic optimizations 

strategies that are currently mutually exclusive. 

Finally, we show that this approach is

polynomially equivalent to 

classically controlled 

adiabatic evolution; 

illustrating that this 

hybrid model is 

not unrealistic.

2) The evolutions 

have opposite (signs 

of) derivatives at 

both boundaries.

The cost is measured as
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linear combination

Boundary cancellation optimizes scaling in the

adiabatic regime

Linear combinations

Evolutions 

can be close 
to LAE - fast 

convergence.
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Coherent 

control

N levels

2 levels

Local adiabatic evolution minimizes time to reach the 

adiabatic regime. 

AQC

The success probability reaches

We add a small ancillary register and 

condition the adiabatic evolution on its state.

A measurement on ancillas allows us to 

Convex combination of two evolutions 

with (almost) opposite errors

Controlled adiabatic evolution is 

polynomially equivalent to the circuit 

model. The continuous evolution can be 

broken to discreet steps and simulated with 

quantum gates.

The Hamiltonian must be 3-times 

differentiable, row computable and sparse.

with error

1) Add more unitaries and solve a system of algebraic equations.

2) If H1 and H0 have the 

same spectra we can 

suppress all transitions 

at once by picking 

antisymmetric 

interpolations. 

1) The evolutions 

have the same 

(signs of) 

derivatives at 

the end and 

opposite ones 

at the 

beginning.

of unitaries.

implement a wider class of operations 

including linear combinations
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