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Can we encode complicated models into a
relatively small neural network?

• quantum algorithm
• exploiting the full power of a quantum computer
• can handle quantum input/output

Boltzmann machines are a good candidate for
quantizations [ M. H. Amin, et al., arXiv:1601.02036]
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What is a quantum Boltzmann machine?

Boltzmann machines are
neural networks used for
generative machine learning.
[G. E. Hinton, 2012]



Generative Training

“What I cannot create,
I do not understand.”

—Richard Feynman



Generative Training

[https://github.com/jcjohnson/neural-style]
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Algorithm learns a model that explains how
the data were generated.

• Assume there is an underlaying distribution of the
data parametrized by {Θi}

• Find {Θi} that “explains” the data
• Generate similar examples using the model



The Neural Network
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visible units serve as input/output
hidden units provide extra degrees of freedom
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weights and biases are learned during training



Boltzmann Machine
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Units si can take values −1 and 1
Energy of a configuration

E(v, h) =
∑

vertices i

bisi +
∑

edges <i,j>

wi,jsisj

Motivated by the Ising model

E(v, h) = (−1)·1 + (−2)·1 + 3·(−1)+

+ 3· 1·1 + (−2)·1·(−1) + 5·1·(−1)

= −6



Probability of a configuration on visible (v)

and hidden (h) units

3 -2

5
-2 3

-1

1 -1

1
p(v, h) =

1

Z
e−E(v,h)

Z =
∑
v,h

e−E(v,h)

Boltzmann distribution
favors low-energy states



Probability of a configuration on visible (v)

units is the marginal distribution
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p(v) =
∑
h

p(v, h) =
∑
h

1

Z
e−E(v,h)

Z =
∑
v,h

e−E(v,h)

The distribution p(v) should be close to
the distribution over the data q(v) for a
properly trained Boltzmann machine.



“Distance” Measure
The distribution p(v) =

∑
h p(v, h) should be close to the

distribution over the data q(v) for a properly trained
Boltzmann machine
KL divergence

LKL =
∑
v∈data

q(v)

[
log
(
q(v)

)
− log

(∑
h

p(v, h)
)]

Negative log-likelihood

L = −
∑
v∈data

q(v) log
(∑

h

p(v, h)
)

L is difficult to compute



Minimize KL divergence using gradient
descent

Gradient of L is easy* to compute
Requires only expectation values of
single vertices or edges

∂ log p(v)

∂wi,j
= 〈sisj〉data − 〈sisj〉model

∂ log p(v)

∂bi
= 〈si〉data − 〈si〉model

*Given an approximation of a thermal state



Boltzmann Machine Training: The Algorithm

1. decide on the graph
2. generate starting weights and biases
3. construct the energy function
4. repeat for number of epochs:

4.1 measure expectation values in the thermal state
4.2 repeat for each training example

4.2.1 set visible units to the example vector
4.2.2 create a thermal state on hidden units
4.2.3 measure expectation values

4.3 compute gradients
4.4 update weights and biases
4.5 construct the new energy function
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Quantum Boltzmann Machine

Quantum version of:

Energy function

Objective function

Training data



Energy Function

Classical thermal distribution:

p =
1

Z
e−E, Z =

∑
z

e−E

Quantum thermal state:

ρ =
1

Z
e−H , Z = Tr

[
e−H

]
Hamiltonian for Ising model

H =
∑
i

biσ
z
i +

∑
i<j

wi,jσ
z
i σ

z
j

energy H |ψ〉 = E |ψ〉



Hamiltonian

Arbitrary QBM Hamiltonian

H =
∑
i

θiHi, ||Hi|| = 1

Transverse Ising
Model

Pauli Basis Fermionic
Hamiltonian



Objective Function

KL divergence

LKL =
∑
v∈data

q(v)

[
log
(
q(v)

)
− log

(∑
h

p(v, h)
)]

Quantum Relative Entropy

S = Tr [ρdata (log ρdata − log σmodel)]



Objective Function

Minimize the objective function

Oρ = −Tr [ρdata log ρmodel]

For no hidden units:

∂θOρ = 〈∂θH〉qbm − 〈∂θH〉data



Learning Quantum States

〈∂θH〉model = Tr
[
∂θH

e−H

Tr[e−H ]

]
estimated by sampling from the QBM

〈∂θH〉data = Tr[∂θHρdata]

created by simulation



Training data is a density matrix

Creating a representation of a quantum state is the goal of
tomography



Tomography

unknown
state

classical
description

local measurements



Tomography

• local measurements give gradients of relative entropy
• QBM describes the unknown state as a thermal state

of a Hamiltonian
• Hamiltonian gives a classical approximate

description of a state
• bonus: QBM works as an approximate cloning device



Relative Entropy Training
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Relative Entropy Training

• low number of epochs
• “compact” models for

quantum states
• general method but can

be tailored
• ability to create copies

of a quantum state

• each epoch requires
estimation of several
expectations values

• approximating a
thermal state can be
costly
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Relative Entropy Training

• learn classical or quantum data
• gradient descent algorithm
• unorthodox approach to tomography
• approximate cloning



Objective Function - Part Deux

log-likelihood

L =
∑
v∈data

q(v) log
( ∑

h e
−E(v,h)∑

v′,h′ e
−E(v′,h′)

)
quantum log-likelihood

OΛ(H) =
∑
v

Pv log

(
Tr
[
Λve

−H]
Tr [e−H ]

)
where Λv is a projector on state v on visible units

[ M. H. Amin, et al., arXiv:1601.02036]



Golden-Thompson Training

The gradient cannot be directly computed but can be
bounded using Golden-Thomson inequality

L ≥
∑
v

Pv log
(Tr[Λve

−Hv ]

Tr[e−H ]

)
“clamped” Hamiltonian Hv = H − lnΛv

cannot learn states where Tr[e−Hv∂θH] = 0
[ M. H. Amin, et al., arXiv:1601.02036]



How to extend the training set beyond
classical states?

The set {Λv}must be POVM

The choice for classical data is ambiguous



Example: Training Set

• classical

Λn = |2n〉〈2n| for 1 ≤ n ≤ 8

Λ0 = 1−
8∑

n=1

Λn, Pv = (1− δv,0)/8.

• superposition

Λ1 =
1

8

(
|2〉+ · · ·+ |16〉

)(
〈2|+ · · ·+ 〈16|

)
,

Λ0 = 1− Λ1, Pv = δv,1.



5 visible units
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5 visible units

10 1 10 2 10 3

epoch

0.01

0.1

2
−
∆
O

Λ
(m
ed
ia
n
)

q, hidden = 0
c, hidden = 0
c, hidden = 1
c, hidden = 2

QBM with
no hidden units
still ouperforms BMs

BM with no hidden units can't learn

underfitting

typical behaviour

more hidden units did not 
bring additional precission



Golden-Thompson Training

• natural generalization of log-likelihood
• bound on the gradient can provide high-precision

results
• compact models of data



Quantum Relative Entropy vs
Golden-Thompson Training

102 103 104 105

epoch

10-2

10-1

−
O

Λ
 (
m
ed
ia
n
)

entropy
q, hidden = 0



The thermal state is difficult to compute

Boltzmann machines face the
same limitations but work well
with a weak approximation of the
thermal state (contrastive
divergence for RBM)



Thermal State

In practice we do not compute expectations values in the
thermal state

• finite number of samples n
• approximation of the thermal state error εH

Error in estimating each component of the gradient

O
(√

1/n+ ε2H

)
Existing algorithms:
[A. N. Chowdhury and R. D. Somma, arXiv:1603.02940]
[M. Yung and A. Aspuru-Guzik, Proc. Natl. Acad. Sci]



Complexity

QBM is BQP hard
• can’t be simulated efficiently unless BPP=BQP
• likely to provide quantum advantage

To Do:
• larger scale needed to show performance in practice
• unclear how approximations affect the convergence

in practice



Summary
• Potential application for medium size quantum

computers
• Richer models, better approximation than classical

Boltzmann machines
• A new type of tomography - thermal state

representation

Thank you!
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