Techniques for preparing eigenstates of fermionic Hamiltonians

Mária Kieferová

September 11, 2019

University of Technology Sydney

Overview

• Antisymmetrizing the wavefunction

[Berry et al., Improved Techniques for Preparing Eigenstates of Fermionic Hamiltonians, NPJ QI 2018]

• Simulating time-dependent Hamiltonians

[Kieferová et al., Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series, PRA 2019]

our recent review:

[Cao et al., Quantum Chemistry in the Age of Quantum Computing, Chem. Rev. 2019]

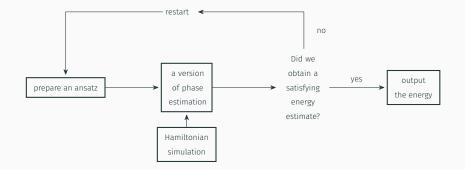
Quantum Computing for Chemistry and Material Science

Algorithms for fault-tolerant quantum computers - beyond NISQ.

[credit: PharmaFactz, 123RF.com, Safety+Health Magazine]

Eigenenergy Estimation

Goal: compute the ground state energy of a molecule



[Abrams, Lloyd PRL (1997), Aspuru-Guzik et al. Science (2005)]

Antisymmetrization

State of *m* electrons, *N* sites/orbitals.

Fermions in the 1st quantization - symmetry is captured by the state.

- classically intractable
- typically better scaling than 2nd quantization for quantum algorithms

Input: ordered list of occupied orbitals

Output: completely antisymmetric state

$$|r_1\cdots r_m\rangle\mapsto \sum_{\sigma\in S_m} (-1)^{\pi(\sigma)} |\sigma(r_1,\cdots,r_m)\rangle$$

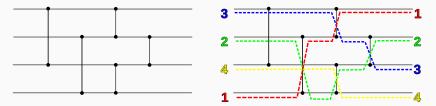
where $\pi(\sigma)$ is the parity of the permutation σ , and $r_p < r_{p+1}$.

NEW: Two approaches based on a classical (Fisher-Yates) shuffle and on reversed sort.

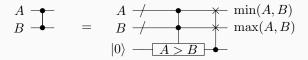
[Abrams, Lloyd PRL (1997)]

Sorting Network

Data-oblivious and reversible sort



[Batcher 1968, Knuth 1968, source:wikipedia]



Bitonic sort requires $\mathcal{O}(m \log^2 m)$ comparators.

Coherent Comparison - Divide and Conquer

01010001<mark>11010101</mark> 01011010<mark>10110100</mark>

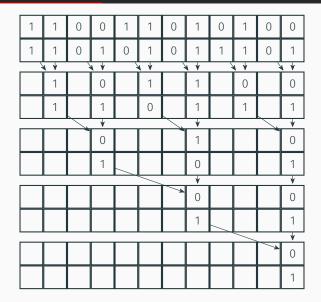
Compare each part separately and then merge the outcomes for the final comparison.

Coherent Comparison - Divide and Conquer

Only ever compare pairs of bits.

Gate count $\mathcal{O}(\log N)$, depth $\mathcal{O}(\log \log N)$.

How Does the Comparison work?



Reverse the algorithm to uncompute

0⟩ 0 ⟩	\rightarrow	$ 0\rangle 0\rangle$	\rightarrow	$\left 0\right\rangle \left 0\right\rangle \left no \; swap ight angle$	\rightarrow	0} 0 <mark>> no s</mark> wap>
	\rightarrow	0 angle $ 1 angle$	\rightarrow	0⟩ 1⟩ no swap⟩	\rightarrow	0⟩ 1⟩ no swap⟩
	\rightarrow	$ 0\rangle 2\rangle$	\rightarrow	0〉 2〉 no swap〉	\rightarrow	0〉 2〉 no swap〉
	\rightarrow	0⟩ 3⟩	\rightarrow	0〉 3〉 no swap〉	\rightarrow	0 angle $ 3 angle$ $ no$ swap $ angle$
	\rightarrow	$ 1\rangle 0\rangle$	\rightarrow	$ 0\rangle 1\rangle $ swap \rangle	\rightarrow	0 angle 1 angle swap $ angle$
	\rightarrow	$ 1\rangle$ $ 1\rangle$	\rightarrow	1⟩ 1⟩ no swap⟩	\rightarrow	1) 1) no swap)
	\rightarrow	$ 1\rangle 2\rangle$	\rightarrow	1〉 2〉 no swap〉	\rightarrow	$\left 1 ight angle\left 2 ight angle\left $ no swap $ ight angle$
	\rightarrow	1> 3>	\rightarrow	1〉 3〉 no swap〉	\rightarrow	1⟩ 3⟩ no swap⟩
	\rightarrow	$\left 2\right\rangle \left 0\right\rangle$	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle
	\rightarrow	$\left 2\right\rangle \left 1\right\rangle$	\rightarrow	$ 1\rangle 2\rangle $ swap \rangle	\rightarrow	$ 1\rangle 2\rangle $ swap \rangle
	\rightarrow	2⟩ 2⟩	\rightarrow	2〉 2〉 no swap〉	\rightarrow	2) 2) no sw ap)
	\rightarrow	2 3	\rightarrow	2〉 3〉 no swap〉	\rightarrow	2〉 3〉 no swap〉
	\rightarrow	3> 0>	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle
	\rightarrow	3> 1>	\rightarrow	$ 1\rangle 3\rangle $ swap \rangle	\rightarrow	$ 1\rangle$ $ 3\rangle$ swap \rangle
	\rightarrow	3> 2>	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle
	\rightarrow	3> 3>	\rightarrow	3〉 3〉 no swap〉	\rightarrow	3) 3) no swap)

Create a uniform superposition

$ 0\rangle 0\rangle$	\rightarrow	0 angle 0 angle no swap $ angle$	\rightarrow	0 <u>> 0</u> > no s wap>		
$ 0\rangle 1\rangle$	\rightarrow	0 angle $ 1 angle$ $ no$ swap $ angle$	\rightarrow	0⟩ 1⟩ no swap⟩		
$ 0\rangle 2\rangle$	\rightarrow	0 angle $ 2 angle$ $ no$ swap $ angle$	\rightarrow	0〉 2〉 no swap〉		
0 3 3	\rightarrow	0 angle $ 3 angle$ $ no$ swap $ angle$	\rightarrow	0〉 3〉 no swap〉		
1 angle 0 angle	\rightarrow	$ 0\rangle 1\rangle $ swap \rangle	\rightarrow	0 angle 1 angle swap $ angle$		
$ 1\rangle$ $ 1\rangle$	\rightarrow	1 angle $ 1 angle$ $ no$ swap $ angle$	\rightarrow	1) 1) no sw ap)		
$ 1\rangle$ $ 2\rangle$	\rightarrow	1〉 2〉 no swap〉	\rightarrow	1〉 2〉 no swap〉		
1> 3>	\rightarrow	1〉 3〉 no swap〉	\rightarrow	1〉 3〉 no swap〉		
$\left 2\right\rangle \left 0\right\rangle$	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle		
$\left 2\right\rangle \left 1\right\rangle$	\rightarrow	$ 1\rangle 2\rangle $ swap \rangle	\rightarrow	$ 1\rangle 2\rangle $ swap \rangle		
2 2 2 2 2 2 2 2 2 2 2 2 2	\rightarrow	2〉 2〉 no swap〉	\rightarrow	2) 2 <mark>) no s</mark> wap)		
2 3	\rightarrow	2〉 3〉 no swap〉	\rightarrow	2〉 3〉 no swap〉		
3 0	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle		
3> 1>	\rightarrow	$ 1\rangle$ $ 3\rangle$ swap \rangle	\rightarrow	$ 1\rangle$ $ 3\rangle$ swap \rangle		
3 2	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle		
3> 3>	\rightarrow	3〉 3〉 no swap〉	\rightarrow	3) 3) no sw ap)		
Sort registers and						
record swaps						

 $\left|0
ight
angle\left|0
ight
angle$

 \rightarrow

 \rightarrow

 \rightarrow

→ c

 \rightarrow

 \rightarrow

$ 0\rangle 0\rangle$	\rightarrow	0〉 0〉 no swap〉	\rightarrow	0) 0) no swa p)			
0 angle $ 1 angle$	\rightarrow	$ 0\rangle 1\rangle no\;swap angle$	\rightarrow	0⟩ 1⟩ no swap⟩			
$ 0\rangle 2\rangle$	\rightarrow	0〉 2〉 no swap〉	\rightarrow	0〉 2〉 no swap〉			
0 3 3	\rightarrow	0〉 3〉 no swap〉	\rightarrow	0〉 3〉 no swap〉			
$ 1\rangle 0\rangle$	\rightarrow	$ 0\rangle 1\rangle $ swap \rangle	\rightarrow	$ 0\rangle 1\rangle $ swap \rangle			
$ 1\rangle$ $ 1\rangle$	\rightarrow	1⟩ 1⟩ no swap⟩	\rightarrow	1) 1) no swap)			
$ 1\rangle 2\rangle$	\rightarrow	$\left 1\right\rangle\left 2\right\rangle\left $ no swap $\right\rangle$	\rightarrow	1⟩ 2⟩ no swap⟩			
1 3	\rightarrow	$\left 1\right\rangle \left 3\right\rangle \left \text{no swap}\right\rangle$	\rightarrow	1〉 3〉 no swap〉			
$\left 2\right\rangle \left 0\right\rangle$	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle			
$\left 2\right\rangle \left 1\right\rangle$	\rightarrow	1〉 2〉 swap 〉	\rightarrow	$ 1\rangle 2\rangle $ swap \rangle			
$ 2\rangle 2\rangle$	\rightarrow	$\left 2\right\rangle\left 2\right\rangle$ $\left \text{no swap}\right\rangle$	\rightarrow	2) 2) no s wap)			
2 3	\rightarrow	2〉 3〉 no swap〉	\rightarrow	2〉 3〉 no swap〉			
3> 0>	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle			
$ 3\rangle$ $ 1\rangle$	\rightarrow	$ 1\rangle 3\rangle $ swap \rangle	\rightarrow	1〉 3〉 swap 〉			
3> 2>	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle			
3> 3>	\rightarrow	3〉 3〉 no swap〉	\rightarrow	3) 3) no swap)			
		Flag and delete					
		repetitions					
		repetitions					

 $|0\rangle |0\rangle$

	\rightarrow	$ 0\rangle 0\rangle$	\rightarrow	0〉 0〉 no swap〉	\rightarrow	0} 0 <mark>} no s</mark> wap}
	\rightarrow	0 angle $ 1 angle$	\rightarrow	0⟩ 1⟩ no swap⟩	\rightarrow	$ 0\rangle$ $ 1\rangle$ $ no$ swap \rangle
	\rightarrow	$ 0\rangle 2\rangle$	\rightarrow	0〉 2〉 no swap〉	\rightarrow	0〉 2〉 no swap〉
	\rightarrow	0⟩ 3⟩	\rightarrow	0〉 3〉 no swap〉	\rightarrow	0〉 3〉 no swap〉
	\rightarrow	$ 1\rangle 0\rangle$	\rightarrow	$ 0\rangle 1\rangle $ swap \rangle	\rightarrow	$ 0\rangle 1\rangle $ swap \rangle
	\rightarrow	$ 1\rangle$ $ 1\rangle$	\rightarrow	1〉 1〉 no swap〉	\rightarrow	1) 1) no swap)
	\rightarrow	1> 2>	\rightarrow	1⟩ 2⟩ no swap⟩	\rightarrow	1⟩ 2⟩ no swap⟩
	\rightarrow	1⟩ 3⟩	\rightarrow	1〉 3〉 no swap〉	\rightarrow	1〉 3〉 no swap〉
$ 0\rangle 0\rangle$	\rightarrow	$ 2\rangle 0\rangle$	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle	\rightarrow	$ 0\rangle 2\rangle $ swap \rangle
	\rightarrow	2 1 2	\rightarrow	$ 1\rangle 2\rangle $ swap \rangle	\rightarrow	$ 1\rangle$ $ 2\rangle$ swap \rangle
	\rightarrow	2 2 2 2 2 2 2 2 2 2 2 2 2	\rightarrow	2〉 2〉 no swap〉	\rightarrow	2) 2) no sw ap)
	\rightarrow	2 3	\rightarrow	2〉 3〉 no swap〉	\rightarrow	$ 2\rangle 3\rangle $ swap \rangle
	\rightarrow	3 0	\rightarrow	$ 0\rangle 3\rangle $ swap \rangle	\rightarrow	$ 0\rangle$ $ 3\rangle$ swap \rangle
	\rightarrow	3> 1>	\rightarrow	1〉 3〉 swap 〉	\rightarrow	$ 1\rangle$ $ 3\rangle$ swap \rangle
	\rightarrow	3> 2>	\rightarrow	2〉 3〉 swap 〉	\rightarrow	$\left 2\right\rangle \left 3\right\rangle \left $ swap $\right\rangle$
	\rightarrow	3> 3>	\rightarrow	3〉 3〉 no swap〉	\rightarrow	3) 3) no swap)
Jutcomor						-

Outcome:

 $\left(\left| 0 \right\rangle \left| 1 \right\rangle + \left| 0 \right\rangle \left| 2 \right\rangle + \left| 0 \right\rangle \left| 3 \right\rangle + \left| 1 \right\rangle \left| 2 \right\rangle + \left| 1 \right\rangle \left| 3 \right\rangle + \left| 2 \right\rangle \left| 3 \right\rangle \right) \otimes \left(\left| \text{swap} \right\rangle + \left| \text{no swap} \right\rangle \right)$

Discard the sorted data register and use the register oswap) with swaps to (anti)symmetrize a given state $\left(\begin{array}{|} |4\rangle |7\rangle \right) \left(\stackrel{(1)}{\rightarrow} |swap\rangle + |no| swap\rangle |_1 \right) |_{nox} |_{(1)}$ by running the sort backwards. The comparisons in In swap the sort will clean the ancillae encoding swaps.

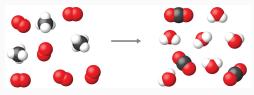
Complexity:

- $\mathcal{O}(m \log^2 m \log N)$ gates (prior: $\mathcal{O}(m^2 \log^2 N)$)
- $\mathcal{O}(\log^2 m \log \log N)$ depth (prior: $\mathcal{O}(m^2 \log^2 N))$
- polynomial and exponential improvement to Abrams & Lloyd

Simulating time-dependent Hamiltonians

Motivation: Simulating Quantum Systems is Notoriously Difficult

First application of quantum computing



Product formulae: [Lloyd 1996, Aharonov & Ta-Shma 2003, Berry et al. 2007, Wiebe 2010, Campbell 2018, ...]

LCU: [Childs & Wiebe 2012, Berry et al. 2013, Berry et al. 2014, Berry et al. 2015, Berry et al. 2017, ...] Other: [Childs 2010, Berry & Childs 2009, Low & Chuang 2016, Low & Chuang 2017, Low & Wiebe 2018, Gilyén 2019, ...]

+ simulations of special Hamiltonians, resource studies, applications

Implement the time evolution

$$irac{d}{dt}\left|\psi(t)
ight
angle=H(t)\left|\psi(t)
ight
angle$$

with logical error at most ϵ where H is a d-sparse Hermitian matrix.

[Lloyd 1996, Aharonov & Ta-Shma 2003, Wiebe et al. 2011, Poulin et al. 2011, Low & Wiebe 2018, Berry et al. 2019]

NEW: Algorithm for simulating time-dependent Hamiltonians with poly-logarithmic dependence on the inverse error.

Reduced dependence on the norm in exchange for a time-dependent Hamiltonian

$$H = A + B$$

A – large norm, easy to implement, for example diagonal

B – small norm, must use regular Hamiltonian simulation methods

$$H_{I}(t) = e^{iAt}Be^{-iAt}$$

[Low, Wiebe 2019]

Discretization

- Split the evolution into *r* segments
- Truncated Dyson (Taylor) series

$$U(0,T/r) \approx \sum_{k=0}^{K} \frac{(-i)^k}{k!} \mathcal{T} \int_0^{T/r} d\mathbf{t} H(t_k) \dots H(t_1)$$

• Discretize the integrals

$$U(0,T/r) \approx \sum_{k=0}^{K} \frac{(-iT/r)^{k}}{M^{k}k!} \sum_{j_{1},\ldots,j_{k}=0}^{M-1} \mathcal{T}H(t_{j_{k}})\ldots H(t_{j_{1}})$$

- Decompose Hamiltonians into linear combinations of unitaries H_{ℓ}

$$H(t) = \gamma \sum_{\ell=0}^{L-1} H_{\ell}(t)$$
 or $H(t) = \sum_{\ell=0}^{L-1} \alpha_{\ell}(t) H_{\ell}$

The evolution can be approximated by a linear combination of unitaries

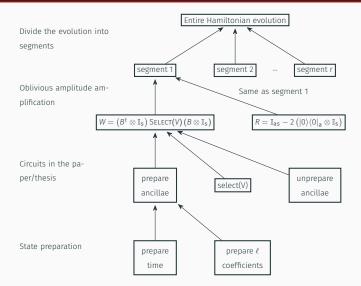
$$U(0,T/r)\approx\sum_{j}\beta_{j}V_{j},$$

where β_j -s are the coefficients and V_j -s products of unitaries.

U(0, T/r) is implemented through

and then boosted to almost perfect success rate using oblivious amplitude amplification.

Overview



[Berry et al. 2014, Kieferova et al. 2019]

How Do We Enforce the Correct Order of Unitaries?

The times for the Hamiltonians must come in the correct order

 $\mathcal{T}H(t_{j_k})\ldots H(t_{j_2})H(t_{j_1}).$

NEW: Two approaches to create a "clock" register.

Ordering based on sorting:

- value of k in unary
- create $\sum_i t_i \otimes \cdots \otimes \sum_i t_i$
- \cdot sort the registers

Complexity:

• $\mathcal{O}\left(d^2 H_{\max} T \frac{\log(dH_{\max}T/\epsilon)}{\log\log(dH_{\max}T/\epsilon)}\right)$ queries, same as for the time-independent LCU algorithm

[Lloyd 1996, Aharonov 2003, Aharonov 2008, Wiebe et al. 2011, Poulin 2011] \sim poly(1/ ϵ)

 \cdot gate complexity depends on $\log(||\dot{H}||)$

([Lloyd 1996, Aharonov 2003, Aharonov 2008, Wiebe et al. 2011] polynomial dependence,

[Poulin 2011] independent)

- An efficient, low-depth algorithm for antisymmetrization of a fermionic wavefunction.
- A new algorithm simulating time-dependent Hamiltonians.

Thank you!