Techniques for preparing eigenstates of

fermionic Hamiltonians

Mária Kieferová
September 11, 2019

University of Technology Sydney

Overview

- Antisymmetrizing the wavefunction
[Berry et al., Improved Techniques for Preparing Eigenstates of Fermionic Hamiltonians, NPJ QI 2018]
- Simulating time-dependent Hamiltonians
[Kieferová et al., Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series, PRA 2019]
our recent review:
[Cao et al., Quantum Chemistry in the Age of Quantum Computing, Chem. Rev. 2019]

Quantum Computing for Chemistry and Material Science

Algorithms for fault-tolerant quantum computers - beyond NISQ.
[credit: PharmaFactz, 123RF.com, Safety+Health Magazine]

Eigenenergy Estimation

Goal: compute the ground state energy of a molecule

[Abrams, Lloyd PRL (1997), Aspuru-Guzik et al. Science (2005)]

Antisymmetrization

First Quantization

State of m electrons, N sites/orbitals.
Fermions in the 1st quantization - symmetry is captured by the state.

- classically intractable
- typically better scaling than 2nd quantization for quantum algorithms

Preparation of Fermionic States

Input: ordered list of occupied orbitals
Output: completely antisymmetric state

$$
\left|r_{1} \cdots r_{m}\right\rangle \mapsto \sum_{\sigma \in S_{m}}(-1)^{\pi(\sigma)}\left|\sigma\left(r_{1}, \cdots, r_{m}\right)\right\rangle
$$

where $\pi(\sigma)$ is the parity of the permutation σ, and $r_{p}<r_{p+1}$.
NEW: Two approaches based on a classical (Fisher-Yates) shuffle and on reversed sort.
[Abrams, Lloyd PRL (1997)]

Sorting Network

Data-oblivious and reversible sort

[Batcher 1968, Knuth 1968, source:wikipedia]

Bitonic sort requires $\mathcal{O}\left(m \log ^{2} m\right)$ comparators.

Coherent Comparison - Divide and Conquer

0101000111010101 0101101010110100

Compare each part separately and then merge the outcomes for the final comparison.

Coherent Comparison - Divide and Conquer

0101000111010101 0101101010110100 01010001|1010101 0101101010110100 0101|0001|1101|0101 0101101010110100

Only ever compare pairs of bits.
Gate count $\mathcal{O}(\log N)$, depth $\mathcal{O}(\log \log N)$.

How Does the Comparison work?

1	1	0	0	1	1	0	1	0	1	0	0
1	1	0	1	0	1	0	1	1	1	0	1
\checkmark											
	1		0		1		1		0		0
	1		1		0		1		1		1
\downarrow, \downarrow, \downarrow,											
			0				1				0
			1				0				1
\downarrow - \downarrow											
						\pm	0				0
							1				1
\square											
											0
											1

Reverse the algorithm to uncompute

Antisymmetrization via a Quantum Sort

| | \rightarrow | $\|0\rangle\|0\rangle$ | \rightarrow | $\|0\rangle\|0\rangle \mid$ no swap \rangle | \rightarrow |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| $\|0\rangle\|0\rangle \mid$ no swap | | |
| :--- | :--- | :--- |
| | \rightarrow | $\|0\rangle\|1\rangle$ |

Create a uniform superposition

Antisymmetrization via a Quantum Sort

$$
\begin{aligned}
& \rightarrow \quad|0\rangle|0\rangle \quad \rightarrow \\
& \rightarrow \quad|0\rangle|1\rangle \quad \rightarrow \\
& \rightarrow \quad|0\rangle|2\rangle \quad \rightarrow \\
& \rightarrow \quad|0\rangle|2\rangle \mid n o \text { swap }\rangle \\
& \rightarrow \\
& \rightarrow \quad|0\rangle|0\rangle \mid n o \text { swap }\rangle \\
& \rightarrow \quad|0\rangle|1\rangle \mid \text { no swap }\rangle \\
& \rightarrow \quad|0\rangle|2\rangle \mid \text { no swap }\rangle \\
& \rightarrow \quad|0\rangle|3\rangle \quad \rightarrow \\
& \rightarrow \quad|1\rangle|0\rangle \quad \rightarrow \\
& \rightarrow \quad|1\rangle|1\rangle \quad \rightarrow \\
& \rightarrow \quad|1\rangle|2\rangle \quad \rightarrow \\
& \rightarrow \quad|1\rangle|3\rangle \quad \rightarrow \\
& |0\rangle|0\rangle \\
& \rightarrow \quad|2\rangle|0\rangle \quad \rightarrow \\
& \rightarrow \quad|2\rangle|1\rangle \quad \rightarrow \\
& \rightarrow \quad|2\rangle|2\rangle \quad \rightarrow \\
& \rightarrow \quad|2\rangle|3\rangle \quad \rightarrow \\
& \rightarrow \quad|3\rangle|0\rangle \quad \rightarrow \\
& \rightarrow \quad|3\rangle|1\rangle \quad \rightarrow \\
& \rightarrow \quad|3\rangle|2\rangle \quad \rightarrow \\
& \rightarrow \quad|3\rangle|3\rangle \quad \rightarrow \\
& \text { |0〉|0〉|no swap> } \\
& \rightarrow \\
& \rightarrow \\
& \rightarrow \\
& \rightarrow \quad|1\rangle|2\rangle \mid \text { no swap }\rangle \\
& \rightarrow \quad|1\rangle|3\rangle \mid \text { no swap }\rangle \\
& \rightarrow \quad|0\rangle|2\rangle \mid \text { swap }\rangle \\
& \rightarrow \\
& \rightarrow \\
& \rightarrow \quad|2\rangle|3\rangle \mid \text { no swap }\rangle \\
& \rightarrow \quad|0\rangle|3\rangle \mid \text { swap }\rangle \\
& \rightarrow \quad|1\rangle|3\rangle \mid \text { swap }\rangle \\
& \rightarrow \\
& \rightarrow \\
& \text { |2〉 |3〉| swap > } \\
& \text { Sort registers and } \\
& \text { record swaps }
\end{aligned}
$$

Antisymmetrization via a Quantum Sort

> Flag and delete repetitions

Antisymmetrization via a Quantum Sort

| | \rightarrow | $\|0\rangle\|0\rangle$ | \rightarrow | $\|0\rangle\|0\rangle \mid$ no swap | \rightarrow |
| ---: | :--- | :--- | :--- | :--- | :--- |$|$| $\|0\rangle\|0\rangle$ | no swap | |
| :--- | :--- | :--- |
| | \rightarrow | $\|0\rangle\|1\rangle$ |

Outcome:

$(|0\rangle|1\rangle+|0\rangle|2\rangle+|0\rangle|3\rangle+|1\rangle|2\rangle+|1\rangle|3\rangle+|2\rangle|3\rangle) \otimes(\mid$ swap $\rangle+\mid$ no swap $\rangle)$

Antisymmetrization via a Quantum Sort

Discard the sorted data register and use the register with swaps to (anti)symmetrize a given state
 by running the sort backwards. The comparisons in the sort will clean the ancillae encoding swaps.
no swap〉

Results

Complexity:

- $\mathcal{O}\left(m \log ^{2} m \log N\right)$ gates (prior: $\left.\mathcal{O}\left(m^{2} \log ^{2} N\right)\right)$
- $\mathcal{O}\left(\log ^{2} m \log \log N\right)$ depth (prior: $\left.\mathcal{O}\left(m^{2} \log ^{2} N\right)\right)$
- polynomial and exponential improvement to Abrams \& Lloyd

Simulating time-dependent Hamiltonians

Motivation: Simulating Quantum Systems is Notoriously Diffi-

cult

First application of quantum computing

Product formulae: [Lloyd 1996, Aharonov \& Ta-Shma 2003, Berry et al. 2007, Wiebe 2010, Campbell 2018, ...]
LCU: [Childs \& Wiebe 2012, Berry et al. 2013, Berry et al. 2014, Berry et al. 2015, Berry et al. 2017, ...] Other: [Childs 2010, Berry \& Childs 2009, Low \& Chuang 2016, Low \& Chuang 2017, Low \& Wiebe 2018, Gilyén 2019, ...]

+ simulations of special Hamiltonians, resource studies, applications

Time-dependent Hamiltonian Simulation

Implement the time evolution

$$
i \frac{d}{d t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

with logical error at most ϵ where H is a d-sparse Hermitian matrix.
[Lloyd 1996, Aharonov \& Ta-Shma 2003, Wiebe et al. 2011, Poulin et al. 2011, Low \& Wiebe 2018,
Berry et al. 2019]
NEW: Algorithm for simulating time-dependent Hamiltonians with poly-logarithmic dependence on the inverse error.

Application: Interaction Picture Simulation

Reduced dependence on the norm in exchange for a
time-dependent Hamiltonian

$$
H=A+B
$$

A - large norm, easy to implement, for example diagonal
B - small norm, must use regular Hamiltonian simulation methods

$$
H_{l}(t)=e^{i A t} B e^{-i A t}
$$

Discretization

- Split the evolution into r segments
- Truncated Dyson (Taylor) series

$$
U(0, T / r) \approx \sum_{k=0}^{K} \frac{(-i)^{k}}{k!} \mathcal{T} \int_{0}^{T / r} d t H\left(t_{k}\right) \ldots H\left(t_{1}\right)
$$

- Discretize the integrals

$$
U(0, T / r) \approx \sum_{k=0}^{K} \frac{(-i T / r)^{k}}{M^{k} k!} \sum_{j_{1}, \ldots, j_{k}=0}^{M-1} \mathcal{T} H\left(t_{j_{k}}\right) \ldots H\left(t_{j_{1}}\right)
$$

- Decompose Hamiltonians into linear combinations of unitaries H_{ℓ}

$$
H(t)=\gamma \sum_{\ell=0}^{L-1} H_{\ell}(t) \quad \text { or } \quad H(t)=\sum_{\ell=0}^{L-1} \alpha_{\ell}(t) H_{\ell}
$$

LCU for Hamiltonian Simulation

The evolution can be approximated by a linear combination of unitaries

$$
U(0, T / r) \approx \sum_{j} \beta_{j} V_{j}
$$

where β_{j}-s are the coefficients and V_{j}-s products of unitaries.
$U(0, T / r)$ is implemented through

and then boosted to almost perfect success rate using oblivious amplitude amplification.

Overview

Divide the evolution into
segments

Oblivious amplitude amplification

Circuits in the paper/thesis

State preparation

[Berry et al. 2014, Kieferova et al. 2019]

How Do We Enforce the Correct Order of Unitaries?

The times for the Hamiltonians must come in the correct order

$$
\mathcal{T} H\left(t_{j_{k}}\right) \ldots H\left(t_{j_{2}}\right) H\left(t_{j_{1}}\right) .
$$

NEW: Two approaches to create a "clock" register.
Ordering based on sorting:

- value of k in unary
- create $\sum_{i} t_{i} \otimes \cdots \otimes \sum_{i} t_{i}$
- sort the registers

Results

Complexity:

- $\mathcal{O}\left(d^{2} H_{\max } T \frac{\log \left(d H_{\max } T / \epsilon\right)}{\log \log \left(d H_{\max } T / \epsilon\right)}\right)$ queries, same as for the time-independent LCU algorithm
[Lloyd 1996, Aharonov 2003, Aharonov 2008, Wiebe et al. 2011, Poulin 2011] ~ poly ($1 / \epsilon$)
- gate complexity depends on $\log (|\mid \dot{H} \|)$
([Lloyd 1996, Aharonov 2003, Aharonov 2008, Wiebe et al. 2011] polynomial dependence, [Poulin 2011] independent)

Summary

- An efficient, low-depth algorithm for antisymmetrization of a fermionic wavefunction.
- A new algorithm simulating time-dependent Hamiltonians.

Thank you!

