
Techniques for preparing eigenstates of

fermionic Hamiltonians

Mária Kieferová

September 11, 2019

University of Technology Sydney

Overview

• Antisymmetrizing the wavefunction

[Berry et al., Improved Techniques for Preparing Eigenstates of Fermionic

Hamiltonians, NPJ QI 2018]

• Simulating time-dependent Hamiltonians

[Kieferová et al., Simulating the dynamics of time-dependent Hamiltonians with

a truncated Dyson series, PRA 2019]

our recent review:

[Cao et al., Quantum Chemistry in the Age of Quantum Computing, Chem. Rev.

2019]

1

Quantum Computing for Chemistry and Material Science

Algorithms for fault-tolerant quantum computers - beyond NISQ.

[credit: PharmaFactz, 123RF.com, Safety+Health Magazine]

2

Eigenenergy Estimation

Goal: compute the ground state energy of a molecule

prepare an ansatz

a version

of phase

estimation

Hamiltonian

simulation

Did we

obtain a

satisfying

energy

estimate?

output

the energy

restart

no

yes

[Abrams, Lloyd PRL (1997), Aspuru-Guzik et al. Science (2005)]

Antisymmetrization

First Quantization

State of m electrons, N sites/orbitals.

Fermions in the 1st quantization - symmetry is captured by the state.

• classically intractable

• typically better scaling than 2nd quantization for quantum

algorithms

4

Preparation of Fermionic States

Input: ordered list of occupied orbitals

Output: completely antisymmetric state

|r1 · · · rm⟩ 7→
∑
σ∈Sm

(−1)π(σ) |σ (r1, · · · , rm)⟩

where π(σ) is the parity of the permutation σ, and rp < rp+1.

NEW: Two approaches based on a classical (Fisher-Yates) shuffle and

on reversed sort.

[Abrams, Lloyd PRL (1997)]

5

Sorting Network

Data-oblivious and reversible sort

3

4

2

1

3

2

4

1

[Batcher 1968, Knuth 1968, source:wikipedia]

A • A / • × min(A,B)

B • = B / • × max(A,B)

|0〉 A > B •

Bitonic sort requires O(m log2m) comparators.

6

Coherent Comparison - Divide and Conquer

0101000111010101
0101101010110100

Compare each part separately and then merge the outcomes for the

final comparison.

7

Coherent Comparison - Divide and Conquer

0101000111010101
0101101010110100
0101000111010101
0101101010110100
0101000111010101
0101101010110100

Only ever compare pairs of bits.

Gate count O(logN), depth O(log logN).

8

How Does the Comparison work?

1 1 0 0 1 1 0 1 0 1 0 0

1 1 0 1 0 1 0 1 1 1 0 1

1 0 1 1 0 0

1 1 0 1 1 1

0 1 0

1 0 1

0 0

1 1

0

1

Reverse the algorithm to uncompute 9

Antisymmetrization via a Quantum Sort

→ |0⟩ |0⟩ → |0⟩ |0⟩ |no swap⟩ → ((((((
|0⟩ |0⟩ |no swap⟩

→ |0⟩ |1⟩ → |0⟩ |1⟩ |no swap⟩ → |0⟩ |1⟩ |no swap⟩
→ |0⟩ |2⟩ → |0⟩ |2⟩ |no swap⟩ → |0⟩ |2⟩ |no swap⟩
→ |0⟩ |3⟩ → |0⟩ |3⟩ |no swap⟩ → |0⟩ |3⟩ |no swap⟩
→ |1⟩ |0⟩ → |0⟩ |1⟩ | swap ⟩ → |0⟩ |1⟩ | swap ⟩

→ |1⟩ |1⟩ → |1⟩ |1⟩ |no swap⟩ → ((((((|1⟩ |1⟩ |no swap⟩
→ |1⟩ |2⟩ → |1⟩ |2⟩ |no swap⟩ → |1⟩ |2⟩ |no swap⟩
→ |1⟩ |3⟩ → |1⟩ |3⟩ |no swap⟩ → |1⟩ |3⟩ |no swap⟩

|0⟩ |0⟩ → |2⟩ |0⟩ → |0⟩ |2⟩ | swap ⟩ → |0⟩ |2⟩ | swap ⟩

→ |2⟩ |1⟩ → |1⟩ |2⟩ | swap ⟩ → |1⟩ |2⟩ | swap ⟩

→ |2⟩ |2⟩ → |2⟩ |2⟩ |no swap⟩ → ((((((|2⟩ |2⟩ |no swap⟩
→ |2⟩ |3⟩ → |2⟩ |3⟩ |no swap⟩ → |2⟩ |3⟩ |no swap⟩
→ |3⟩ |0⟩ → |0⟩ |3⟩ | swap ⟩ → |0⟩ |3⟩ | swap ⟩

→ |3⟩ |1⟩ → |1⟩ |3⟩ | swap ⟩ → |1⟩ |3⟩ | swap ⟩

→ |3⟩ |2⟩ → |2⟩ |3⟩ | swap ⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |3⟩ → |3⟩ |3⟩ |no swap⟩ → ((((((|3⟩ |3⟩ |no swap⟩

Create a uniform
superposition

*Up to normalization 10

Antisymmetrization via a Quantum Sort

→ |0⟩ |0⟩ → |0⟩ |0⟩ |no swap⟩ → ((((((
|0⟩ |0⟩ |no swap⟩

→ |0⟩ |1⟩ → |0⟩ |1⟩ |no swap⟩ → |0⟩ |1⟩ |no swap⟩
→ |0⟩ |2⟩ → |0⟩ |2⟩ |no swap⟩ → |0⟩ |2⟩ |no swap⟩
→ |0⟩ |3⟩ → |0⟩ |3⟩ |no swap⟩ → |0⟩ |3⟩ |no swap⟩
→ |1⟩ |0⟩ → |0⟩ |1⟩ | swap ⟩ → |0⟩ |1⟩ | swap ⟩

→ |1⟩ |1⟩ → |1⟩ |1⟩ |no swap⟩ → ((((((|1⟩ |1⟩ |no swap⟩
→ |1⟩ |2⟩ → |1⟩ |2⟩ |no swap⟩ → |1⟩ |2⟩ |no swap⟩
→ |1⟩ |3⟩ → |1⟩ |3⟩ |no swap⟩ → |1⟩ |3⟩ |no swap⟩

|0⟩ |0⟩ → |2⟩ |0⟩ → |0⟩ |2⟩ | swap ⟩ → |0⟩ |2⟩ | swap ⟩

→ |2⟩ |1⟩ → |1⟩ |2⟩ | swap ⟩ → |1⟩ |2⟩ | swap ⟩

→ |2⟩ |2⟩ → |2⟩ |2⟩ |no swap⟩ → ((((((|2⟩ |2⟩ |no swap⟩
→ |2⟩ |3⟩ → |2⟩ |3⟩ |no swap⟩ → |2⟩ |3⟩ |no swap⟩
→ |3⟩ |0⟩ → |0⟩ |3⟩ | swap ⟩ → |0⟩ |3⟩ | swap ⟩

→ |3⟩ |1⟩ → |1⟩ |3⟩ | swap ⟩ → |1⟩ |3⟩ | swap ⟩

→ |3⟩ |2⟩ → |2⟩ |3⟩ | swap ⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |3⟩ → |3⟩ |3⟩ |no swap⟩ → ((((((|3⟩ |3⟩ |no swap⟩

Sort registers and
record swaps

11

Antisymmetrization via a Quantum Sort

→ |0⟩ |0⟩ → |0⟩ |0⟩ |no swap⟩ → ((((((
|0⟩ |0⟩ |no swap⟩

→ |0⟩ |1⟩ → |0⟩ |1⟩ |no swap⟩ → |0⟩ |1⟩ |no swap⟩
→ |0⟩ |2⟩ → |0⟩ |2⟩ |no swap⟩ → |0⟩ |2⟩ |no swap⟩
→ |0⟩ |3⟩ → |0⟩ |3⟩ |no swap⟩ → |0⟩ |3⟩ |no swap⟩
→ |1⟩ |0⟩ → |0⟩ |1⟩ | swap ⟩ → |0⟩ |1⟩ | swap ⟩

→ |1⟩ |1⟩ → |1⟩ |1⟩ |no swap⟩ → ((((((|1⟩ |1⟩ |no swap⟩
→ |1⟩ |2⟩ → |1⟩ |2⟩ |no swap⟩ → |1⟩ |2⟩ |no swap⟩
→ |1⟩ |3⟩ → |1⟩ |3⟩ |no swap⟩ → |1⟩ |3⟩ |no swap⟩

|0⟩ |0⟩ → |2⟩ |0⟩ → |0⟩ |2⟩ | swap ⟩ → |0⟩ |2⟩ | swap ⟩

→ |2⟩ |1⟩ → |1⟩ |2⟩ | swap ⟩ → |1⟩ |2⟩ | swap ⟩

→ |2⟩ |2⟩ → |2⟩ |2⟩ |no swap⟩ → ((((((|2⟩ |2⟩ |no swap⟩
→ |2⟩ |3⟩ → |2⟩ |3⟩ |no swap⟩ → |2⟩ |3⟩ |no swap⟩
→ |3⟩ |0⟩ → |0⟩ |3⟩ | swap ⟩ → |0⟩ |3⟩ | swap ⟩

→ |3⟩ |1⟩ → |1⟩ |3⟩ | swap ⟩ → |1⟩ |3⟩ | swap ⟩

→ |3⟩ |2⟩ → |2⟩ |3⟩ | swap ⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |3⟩ → |3⟩ |3⟩ |no swap⟩ → ((((((|3⟩ |3⟩ |no swap⟩

Flag and delete
repetitions

12

Antisymmetrization via a Quantum Sort

→ |0⟩ |0⟩ → |0⟩ |0⟩ |no swap⟩ → ((((((
|0⟩ |0⟩ |no swap⟩

→ |0⟩ |1⟩ → |0⟩ |1⟩ |no swap⟩ → |0⟩ |1⟩ |no swap⟩
→ |0⟩ |2⟩ → |0⟩ |2⟩ |no swap⟩ → |0⟩ |2⟩ |no swap⟩
→ |0⟩ |3⟩ → |0⟩ |3⟩ |no swap⟩ → |0⟩ |3⟩ |no swap⟩
→ |1⟩ |0⟩ → |0⟩ |1⟩ | swap ⟩ → |0⟩ |1⟩ | swap ⟩

→ |1⟩ |1⟩ → |1⟩ |1⟩ |no swap⟩ → ((((((|1⟩ |1⟩ |no swap⟩
→ |1⟩ |2⟩ → |1⟩ |2⟩ |no swap⟩ → |1⟩ |2⟩ |no swap⟩
→ |1⟩ |3⟩ → |1⟩ |3⟩ |no swap⟩ → |1⟩ |3⟩ |no swap⟩

|0⟩ |0⟩ → |2⟩ |0⟩ → |0⟩ |2⟩ | swap ⟩ → |0⟩ |2⟩ | swap ⟩

→ |2⟩ |1⟩ → |1⟩ |2⟩ | swap ⟩ → |1⟩ |2⟩ | swap ⟩

→ |2⟩ |2⟩ → |2⟩ |2⟩ |no swap⟩ → ((((((|2⟩ |2⟩ |no swap⟩
→ |2⟩ |3⟩ → |2⟩ |3⟩ |no swap⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |0⟩ → |0⟩ |3⟩ | swap ⟩ → |0⟩ |3⟩ | swap ⟩

→ |3⟩ |1⟩ → |1⟩ |3⟩ | swap ⟩ → |1⟩ |3⟩ | swap ⟩

→ |3⟩ |2⟩ → |2⟩ |3⟩ | swap ⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |3⟩ → |3⟩ |3⟩ |no swap⟩ → ((((((|3⟩ |3⟩ |no swap⟩
Outcome:(
|0⟩ |1⟩+|0⟩ |2⟩+|0⟩ |3⟩+|1⟩ |2⟩+|1⟩ |3⟩+|2⟩ |3⟩

)
⊗
(
|swap⟩+|no swap⟩

)
13

Antisymmetrization via a Quantum Sort

→ |0⟩ |0⟩ → |0⟩ |0⟩ |no swap⟩ → ((((((
|0⟩ |0⟩ |no swap⟩

→ |0⟩ |1⟩ → |0⟩ |1⟩ |no swap⟩ → |0⟩ |1⟩ |no swap⟩
→ |0⟩ |2⟩ → |0⟩ |2⟩ |no swap⟩ → |0⟩ |2⟩ |no swap⟩
→ |0⟩ |3⟩ → |0⟩ |3⟩ |no swap⟩ → |0⟩ |3⟩ |no swap⟩
→ |1⟩ |0⟩ → |0⟩ |1⟩ | swap ⟩ → |0⟩ |1⟩ | swap ⟩

→ |1⟩ |1⟩ → |1⟩ |1⟩ |no swap⟩ → ((((((|1⟩ |1⟩ |no swap⟩
→ |1⟩ |2⟩ → |1⟩ |2⟩ |no swap⟩ → |1⟩ |2⟩ |no swap⟩
→ |1⟩ |3⟩ → |1⟩ |3⟩ |no swap⟩ → |1⟩ |3⟩ |no swap⟩

|0⟩ |0⟩ → |2⟩ |0⟩ → |0⟩ |2⟩ | swap ⟩ → |0⟩ |2⟩ | swap ⟩

→ |2⟩ |1⟩ → |1⟩ |2⟩ | swap ⟩ → |1⟩ |2⟩ | swap ⟩

→ |2⟩ |2⟩ → |2⟩ |2⟩ |no swap⟩ → ((((((|2⟩ |2⟩ |no swap⟩
→ |2⟩ |3⟩ → |2⟩ |3⟩ |no swap⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |0⟩ → |0⟩ |3⟩ | swap ⟩ → |0⟩ |3⟩ | swap ⟩

→ |3⟩ |1⟩ → |1⟩ |3⟩ | swap ⟩ → |1⟩ |3⟩ | swap ⟩

→ |3⟩ |2⟩ → |2⟩ |3⟩ | swap ⟩ → |2⟩ |3⟩ | swap ⟩

→ |3⟩ |3⟩ → |3⟩ |3⟩ |no swap⟩ → ((((((|3⟩ |3⟩ |no swap⟩

Discard the sorted data register and use the register

with swaps to (anti)symmetrize a given state(
|4⟩ |7⟩

)(
|swap⟩+ |no swap⟩

)
→

(
|4⟩ |7⟩+ |7⟩ |4⟩

)
|0⟩

by running the sort backwards. The comparisons in
the sort will clean the ancillae encoding swaps.

14

Results

Complexity:

• O(m log2m logN) gates (prior: O(m2 log2 N))

• O(log2m log logN) depth (prior: O(m2 log2 N))

• polynomial and exponential improvement to Abrams & Lloyd

15

Simulating time-dependent

Hamiltonians

Motivation: Simulating Quantum Systems is Notoriously Diffi-

cult

First application of quantum computing

Product formulae: [Lloyd 1996, Aharonov & Ta-Shma 2003, Berry et al. 2007, Wiebe 2010, Campbell
2018, …]
LCU: [Childs & Wiebe 2012, Berry et al. 2013, Berry et al. 2014, Berry et al. 2015, Berry et al. 2017, …]
Other: [Childs 2010, Berry & Childs 2009, Low & Chuang 2016, Low & Chuang 2017, Low & Wiebe
2018, Gilyén 2019, …]

+ simulations of special Hamiltonians, resource studies, applications

16

Time-dependent Hamiltonian Simulation

Implement the time evolution

i ddt |ψ(t)⟩ = H(t) |ψ(t)⟩

with logical error at most ϵ where H is a d-sparse Hermitian matrix.

[Lloyd 1996, Aharonov & Ta-Shma 2003, Wiebe et al. 2011, Poulin et al. 2011, Low & Wiebe 2018,

Berry et al. 2019]

NEW: Algorithm for simulating time-dependent Hamiltonians with

poly-logarithmic dependence on the inverse error.

17

Application: Interaction Picture Simulation

Reduced dependence on the norm in exchange for a

time-dependent Hamiltonian

H = A+ B

A – large norm, easy to implement, for example diagonal

B – small norm, must use regular Hamiltonian simulation methods

HI(t) = eiAtBe−iAt

[Low, Wiebe 2019]

18

Discretization

• Split the evolution into r segments

• Truncated Dyson (Taylor) series

U(0, T/r) ≈
K∑

k=0

(−i)k
k! T

∫ T/r

0
dtH(tk) . . .H(t1)

• Discretize the integrals

U(0, T/r) ≈
K∑

k=0

(−iT/r)k
Mkk!

M−1∑
j1,...,jk=0

T H(tjk) . . .H(tj1)

• Decompose Hamiltonians into linear combinations of unitaries

Hℓ

H(t) = γ

L−1∑
ℓ=0

Hℓ(t) or H(t) =
L−1∑
ℓ=0

αℓ(t)Hℓ

19

LCU for Hamiltonian Simulation

The evolution can be approximated by a linear combination of

unitaries

U(0, T/r) ≈
∑
j

βjVj,

where βj-s are the coefficients and Vj-s products of unitaries.

U(0, T/r) is implemented through

|0⟩ B • B†

|ψ⟩ SELECT(V)

and then boosted to almost perfect success rate using oblivious

amplitude amplification.

20

Overview

Entire Hamiltonian evolution
Divide the evolution into

segments

Oblivious amplitude am-

plification

Circuits in the pa-

per/thesis

State preparation

Same as segment 1

segment 2segment 1 segment r

W =
(
B† ⊗ Is

)
Select(V) (B⊗ Is) R = Ias − 2

(
|0⟩⟨0|a ⊗ Is

)

prepare

ancillae
select(V)

unprepare

ancillae

prepare

time

prepare ℓ

coefficients

…

[Berry et al. 2014, Kieferova et al. 2019]
21

How Do We Enforce the Correct Order of Unitaries?

The times for the Hamiltonians must come in the correct order

T H(tjk) . . .H(tj2)H(tj1).

NEW: Two approaches to create a “clock” register.

Ordering based on sorting:

• value of k in unary

• create
∑

i ti ⊗ · · · ⊗
∑

i ti

• sort the registers

22

Results

Complexity:

• O
(
d2HmaxT log(dHmaxT/ϵ)

log log(dHmaxT/ϵ)

)
queries, same as for the

time-independent LCU algorithm

[Lloyd 1996, Aharonov 2003, Aharonov 2008, Wiebe et al. 2011, Poulin 2011] ∼ poly(1/ϵ)

• gate complexity depends on log(||Ḣ||)

([Lloyd 1996, Aharonov 2003, Aharonov 2008, Wiebe et al. 2011] polynomial dependence,

[Poulin 2011] independent)

23

Summary

• An efficient, low-depth algorithm for antisymmetrization of a

fermionic wavefunction.

• A new algorithm simulating time-dependent Hamiltonians.

Thank you!

24

	Antisymmetrization
	Simulating time-dependent Hamiltonians

