Oblivious Algorithmic Cooling

Mária Kieferová (UTS)

October 23, 2019

based on

Novel Technique for Robust Optimal Algorithmic Cooling, Sadegh Raeisi, Mária Kieferová, Michele Mosca, PRL 2019

- $\cdot\,$ Cooling in a closed system
- Heat bath algorithmic cooling
- \cdot Oblivious implementation

Algorithmic Cooling

Can We Extract One Good Qubit Out Of Many Dirty Ones?

[Schulman, Vazirani (1998)]

Obtain a single purified qubit using *n* qubits and logical operations. Each qubit is in a thermal state

$$\rho_{therm} = \frac{1}{e^{\epsilon} + e^{-\epsilon}} \begin{pmatrix} e^{\epsilon} & 0\\ 0 & e^{-\epsilon} \end{pmatrix}$$

where ϵ is the "polarization" ($\propto \frac{1}{7}$, typically very small).

"Cooling" refers to approximately extracting a qubit in state $|0\rangle\langle 0|$.

"Algorithmic" means that we are purifying a subsystem by applying logical operations.

Assume that the density matrices of our states are always diagonal.

New method for algorithmic cooling:

- uses heat bath and converges to the optimal state
- repeated application of the same operation
- easier implementation, more robustness
- slow convergence in terms of the number of qubits

[Raeisi et al. 2019]

- What are the physical limits of algorithmic cooling?
- What are the required resources?
- How do the assumptions about control affect the points above?

Closed System Cooling

Apply unitaries on the system of qubits.

temperature

Cooling parts of the system heats up the rest.

heat bath

Example: 3 Qubits

Observe that $\rho_{n,n} = \frac{1}{Z}e^{n-2|n|}$ where |n| is the Hamming weight of n in binary.

"Carry out a permutation of the computation basis states $x \in \{0, 1\}^n$ such that states with low Hamming weight should be reordered with a long prefix of 0's."

[Schulman, Vazirani (1998)]

Apply a unitary to order the diagonal elements

$$\begin{pmatrix} e^{3\epsilon} & \dots & \dots & \dots & \dots \\ & e^{\epsilon} & \dots & \dots & \dots \\ & & \dots & e^{\epsilon} & \dots & \dots & \dots \\ & & \dots & \dots & e^{-\epsilon} & \dots & \dots \\ & & \dots & \dots & e^{-\epsilon} & \dots \\ & & \dots & \dots & \dots & e^{-\epsilon} & \dots \\ & & \dots & \dots & \dots & e^{-\epsilon} & \dots \\ & & \dots & \dots & \dots & e^{-\epsilon} & \dots \\ & & \dots & \dots & \dots & e^{-\epsilon} & \dots \\ & & \dots & \dots & \dots & e^{-3\epsilon} \end{pmatrix} \rightarrow \begin{pmatrix} e^{3\epsilon} & \dots & \dots & \dots & \dots \\ e^{3\epsilon} & \dots & \dots & \dots & \dots \\ e^{6\epsilon} & \dots & \dots & \dots \\ e^{6\epsilon} & \dots & \dots & \dots \\ e^{6\epsilon} & \dots & \dots & \dots \\ e^{-\epsilon} & \dots & \dots & \dots \\ e^{-3\epsilon} \end{pmatrix}$$

Compression is limited by Shannon bound.

Heat Bath Algorithmic Cooling (HBAC)

Allow parts of the system (the "reset" qubit) to interact with the heat bath

 $O_{reset}(\rho) = Tr_{reset}[\rho] \otimes \rho_{therm}$

[P. O. Boykin et al. (2002), Schulman et al. (2005)]

For a state with p_1, p_2, \ldots, p_8 on the diagonal

The Partner Pairing Algorithm (PPA)

Compression

Apply a unitary to re-order the diagonal elements.

Reset

Reset the hottest qubit to the original polarization.

Simple scenario: only one qubit interacts with the heat bath (reset qubit), focus on the final polarization of only one qubit (target)

There exists a maximum polarization $\epsilon_f < \infty$ specified the number of qubits *n* and the heat bath polarization for HBAC schemes (with above assumptions).

PPA achieves the maximum polarization in *poly(n)* steps.

[Raeisi, Mosca (2014)]

[Park et al. (2016)]

- What is the complexity of implementing the compression unitaries?
 How do we implement the compression as circuits?
- We require perfect knowledge of the state at all times to apply the correct operations.

Do we need to perform tomography to know the states?

Using the Correct Unitary is Important

Using a unitary corresponding to a slightly different state does not lead to cooling

Oblivious Implementation

Apply a fixed, state independent unitary in each round.

- this unitary can be implemented with a polynomially-sized circuit
- no need for tomography
- some inherent robustness (conjectured)

The Compression Unitary

Cooling as a Markov Chain

Repeated application of the channel

$$U_{\mathit{fix}}^{\dagger}\left(\mathit{Tr}_{\mathit{reset}}[
ho]\otimes
ho_{\mathit{therm}}
ight)U_{\mathit{fix}}$$

converges to the asymptotic state of PPA.

We can analyze this map as a Markov chain on the probability vector $diag(\rho)$ with a transfer matrix

$$T = \frac{1}{Z} \begin{pmatrix} e^{\epsilon} & e^{\epsilon} & 0 & \cdots & 0 \\ e^{-\epsilon} & 0 & e^{\epsilon} & \cdots & 0 \\ 0 & e^{-\epsilon} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{-\epsilon} & e^{-\epsilon} \end{pmatrix}$$

T is (mostly) translationary invariant and stochastic

$$T = \frac{1}{Z} \begin{pmatrix} e^{\epsilon} & e^{\epsilon} & 0 & \cdots & 0 \\ e^{-\epsilon} & 0 & e^{\epsilon} & \cdots & 0 \\ 0 & e^{-\epsilon} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{-\epsilon} & e^{-\epsilon} \end{pmatrix}.$$

We analytically compute its spectrum using a wave-like ansatz.

Unique +1 eigenvector is the asymptotic state

$$diag(\rho) \propto (1, e^{-2\epsilon}, e^{-4\epsilon}, \dots) \otimes \rho_{therm}.$$

For $\epsilon \ll \frac{1}{2^n}$, the polarization of the first qubit is $\approx 2^{n-2}\epsilon$.

The number of rounds of cooling is determined by the gap of *T*.

- Number of rounds: $\mathcal{O}(2^n)$ (polynomial for PPA)
- Total complexity: $\mathcal{O}(n^2 2^n)$
- + There are strategies that can improve the scaling.
- + Number of qubits is not a fixed parameter.

Robustness of cooling

Can we handle imperfect gates? What is the noise threshold?

- More efficient cooling algorithms
 Could we get a *poly(n)* algorithm?
- Computational complexity of different cooling paradigms
 A lower cooling limit is possible for more complex interaction
 between the qubits and the heat-bath. What is the complexity?
 Can we cool without perfect knowledge about the state?

- New heat bath algorithmic cooling method that converges to the optimal state.
- Fixed operation in every round, no need to know the state, easier to implement.
- Not efficient for a large number of qubits.

