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Overview

• Cooling in a closed system

• Heat bath algorithmic cooling

• Oblivious implementation
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Algorithmic Cooling



Can We Extract One Good Qubit Out Of Many Dirty Ones?

[Schulman, Vazirani (1998)] 2



Framework

Obtain a single purified qubit using n qubits and logical operations.

Each qubit is in a thermal state

ρtherm =
1

eϵ + e−ϵ

eϵ 0

0 e−ϵ


where ϵ is the “polarization” ( ∝ 1

T , typically very small).

”Cooling” refers to approximately extracting a qubit in state |0⟩⟨0|.

”Algorithmic” means that we are purifying a subsystem by applying

logical operations.

Assume that the density matrices of our states are always diagonal.
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Result

New method for algorithmic cooling:

• uses heat bath and converges to the optimal state

• repeated application of the same operation

• easier implementation, more robustness

• slow convergence in terms of the number of qubits

[Raeisi et al. 2019]

4



Fundamental Questions

• What are the physical limits of algorithmic cooling?

• What are the required resources?

• How do the assumptions about control affect the points above?
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Closed System Cooling

Apply unitaries on the system of qubits.

temperature

heat
bath
heat
bathCooling parts of the system heats up the rest.
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Example: 3 Qubits

ρ =
1
Z



e3ϵ . . . . . . .

. eϵ . . . . . .

. . eϵ . . . . .

. . . e−ϵ . . . .

. . . . eϵ . . .

. . . . . e−ϵ . .

. . . . . . e−ϵ .

. . . . . . . e−3ϵ


Observe that ρn,n = 1

Ze
n−2|n| where |n| is the Hamming weight of n in

binary.
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Compression

“Carry out a permutation of the computation basis states x ∈ {0, 1}n

such that states with low Hamming weight should be reordered with

a long prefix of 0’s.”

[Schulman, Vazirani (1998)]
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Example: 3 Qubits

Apply a unitary to order the diagonal elements

e3ϵ . . . . . . .

. eϵ . . . . . .

. . eϵ . . . . .

. . . e−ϵ . . . .

. . . . eϵ . . .

. . . . . e−ϵ . .

. . . . . . e−ϵ .

. . . . . . . e−3ϵ



→



e3ϵ . . . . . . .

. eϵ . . . . . .

. . eϵ . . . . .

. . . eϵ . . . .

. . . . e−ϵ . . .

. . . . . e−ϵ . .

. . . . . . e−ϵ .

. . . . . . . e−3ϵ


Compression is limited by Shannon bound.
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Heat Bath Algorithmic Cooling

(HBAC)



Add a Heat Bath

Allow parts of the system (the

“reset” qubit) to interact with the

heat bath

Oreset(ρ) = Trreset[ρ]⊗ ρtherm

temperature

heat
bath

heat
bath

[P. O. Boykin et al. (2002), Schulman et al. (2005)]

10



Example: 3 Qubits

For a state with p1,p2, . . . ,p8 on the diagonal

1

Z



(p1 + p2)e
ϵ . . . . . . .

. (p1 + p2)e
−ϵ . . . . . .

. . (p3 + p4)e
ϵ . . . . .

. . . (p3 + p4)e
−ϵ . . . .

. . . . (p5 + p6)e
ϵ . . .

. . . . . (p5 + p6)e
−ϵ . .

. . . . . . (p7 + p8)e
ϵ .

. . . . . . . (p7 + p8)e
−ϵ


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The Partner Pairing Algorithm (PPA)

compression

reset

heat
bath

compression

reset

temperature

heat
bath

heat
bath

heat
bath

heat
bath

heat
bath

compression

heat
bath

cold warm
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Two Steps

Compression

Apply a unitary to re-order the diagonal elements.

Reset

Reset the hottest qubit to the original polarization.

Simple scenario: only one qubit interacts with the heat bath (reset

qubit), focus on the final polarization of only one qubit (target)
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The Limitation of HBAC

There exists a maximum polarization ϵf < ∞ specified the number of

qubits n and the heat bath polarization for HBAC schemes (with

above assumptions).

PPA achieves the maximum polarization in poly(n) steps.

[Raeisi, Mosca (2014)]
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Example: 3 Qubits

[Park et al. (2016)]
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Two Big Problems

• What is the complexity of implementing the compression

unitaries?

How do we implement the compression as circuits?

• We require perfect knowledge of the state at all times to apply

the correct operations.

Do we need to perform tomography to know the states?
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Using the Correct Unitary is Important

Using a unitary corresponding to a slightly different state does not

lead to cooling
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Oblivious Implementation



Our Contribution

Apply a fixed, state independent unitary in each round.

• this unitary can be implemented with a polynomially-sized

circuit

• no need for tomography

• some inherent robustness (conjectured)
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The Compression Unitary

Ufix =



1

σx
. . .

σx

1


requires O(n2) elementary gates.

shift+1shift-1
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Cooling as a Markov Chain

Repeated application of the channel

U†
fix

(
Trreset[ρ]⊗ ρtherm

)
Ufix

converges to the asymptotic state of PPA.

We can analyze this map as a Markov chain on the probability vector

diag(ρ) with a transfer matrix

T = 1
Z



eϵ eϵ 0 · · · 0

e−ϵ 0 eϵ · · · 0

0 e−ϵ 0 · · · 0

0 0 · · ·
. . .

...

0 0 · · · e−ϵ e−ϵ


.
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Spectrum of T

T is (mostly) translationary invariant and stochastic

T =
1
Z



eϵ eϵ 0 · · · 0
e−ϵ 0 eϵ · · · 0
0 e−ϵ 0 · · · 0

0 0 · · ·
. . .

...

0 0 · · · e−ϵ e−ϵ


.

We analytically compute its spectrum using a wave-like ansatz.

Unique +1 eigenvector is the asymptotic state

diag(ρ) ∝ (1, e−2ϵ, e−4ϵ, . . . )⊗ ρtherm.

For ϵ ≪ 1
2n , the polarization of the first qubit is ≈ 2n−2ϵ.
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Complexity

The number of rounds of cooling is determined by the gap of T.

− Number of rounds: O(2n) (polynomial for PPA)

− Total complexity: O(n22n)

+ There are strategies that can improve the scaling.

+ Number of qubits is not a fixed parameter.
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Open Questions

• Robustness of cooling

Can we handle imperfect gates? What is the noise threshold?

• More efficient cooling algorithms

Could we get a poly(n) algorithm?

• Computational complexity of different cooling paradigms

A lower cooling limit is possible for more complex interaction

between the qubits and the heat-bath. What is the complexity?

Can we cool without perfect knowledge about the state?
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Conclusion

• New heat bath algorithmic cooling method that converges to the

optimal state.

• Fixed operation in every round, no need to know the state,

easier to implement.

• Not efficient for a large number of qubits.
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Thank you!
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